SCHOOL	School of Sci	ences		
ACADEMIC UNIT	Department of Computer Science			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	405SBOB		SEMESTER	1
COURSE TITLE	ARTIFICIAL IN	NTELLIGENCE		
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
	Lectures		2	5
	Tutorial Exercises		1	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	General Back	ground, Skills D	evelopment	
PREREQUISITE COURSES:	Algorithms and Data Structures (201SBOB)			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek, Englis	sh		
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)				

LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The purpose of the course is to introduce the scientific area of Artificial Intelligence by presenting its historical development, studying mature technologies, and describing contemporary trends in a wide range of practical applications. Specifically,

The course material aims to introduce students to basic search techniques, description, and their combination. Emphasis is placed on the identification of practical problems where search techniques can be applied such as two-opponent games, constraint satisfaction problems, etc.

Also, the aim is the description of knowledge representations, various reasoning, as well as the description and distinction of various technologies/techniques for handling uncertain knowledge.

Finally, the aim of the course is the recognition by the students of modern application fields of artificial intelligence methods with an emphasis on the internet.

In this sense, the course is the basis on which specific methodologies and techniques are developed in separate special courses of the direction.

Upon successful completion of the course, the student will be able to:

• It can describe a search problem (a) in state space and (b) by induction.

• It can select an appropriate search algorithm to apply to a particular AI problem.

• It can describe a variety of knowledge representations.

• Can recognize various lines of reasoning.

• Can distinguish different types of uncertain knowledge and do some basic calculations with each type of uncertain knowledge.

• It can choose a combination of suitable artificial intelligence methodologies for application in modern fields such as the internet.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking

Others...

• Search, analysis and synthesis of data and information, using the necessary technologies

- Adaptation to new situations
- Decision making
- Autonomous Work
- Teamwork
- Generation of new research ideas
- Production of free, creative and inductive thinking

SYLLABUS

- 1. Introduction to the subject. Correlation with other scientific areas. List of essential tools
- 2. Description (a) in state space and (b) by induction, and examples
- 3. Study of search algorithms, e.g. depth, breadth, "blind" search, "heuristic" search, etc
- 4. Applications of search algorithms to two-opponent games
- 5. Consistency checking algorithms
- 6. Knowledge representations, reasoning and handling of uncertain knowledge
- 7. Probability theory with emphasis on Bayes' theorem and the Dempster-Shafer approach
- 8. Fuzzy sets, fuzzy logic and their applications
- 9. Agents and semantic web

TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	In class		
Face-to-face, Distance learning, etc.			
USE OF INFORMATION AND	Electronic communication (e-mail) according to the needs.		
COMMUNICATIONS TECHNOLOGY			
Use of ICT in teaching, laboratory education,			
communication with students			
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	39	
described in detail. Lacturas, saminars, laboratory practica	Exercises that focus on	26	
fieldwork, study and analysis of bibliography,	applications		
tutorials, placements, clinical practice, art	Bibliography study (group)	20	
workshop, interactive teaching, educational	Individual Exercises	20	
visits, project, essuy writing, artistic creativity,			

etc.	Project	20
The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	125
STUDENT PERFORMANCE		
EVALUATION Description of the evaluation procedure	I. Final written exam (100%) in	cluding problem solving
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	 The evaluation criteria are as follows: Problem Analysis Ability Ability to Design Solutions Ability to Implement Solutions Oral final exam (100%), for those with dyslexia 	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.		

ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
- Related academic journals:
C. Dursell, D. Newig, Artificial Intelligence: A Madern Approach, 2022
S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2022.
Artificial Intelligence
Artificial intelligence
Artificial Intelligence in Engineering
IEEE Intelligent Systems
Information Sciences
IEEE Transactions on Pattern Analysis and Machine Intelligence
Cognitive Systems Research
Engineering Applications of Artificial Intelligence
Expert Systems with Applications
Pattern Recognition
Pattern Recognition Letters